LOYOLA COLLEGE (AUTONOMOUS) CHENNAI – 600 034

Date: 24-04-2025

M.Sc. DEGREE EXAMINATION - STATISTICS

SECOND SEMESTER - APRIL 2025

Dept. No.

Max.: 100 Marks

PST2MC01 - ESTIMATION THEORY

Tir	ne: 01:00 PM	I - 04:00 PN	ſ]		
			SECT	TION A – K1	(CO1)			
	Answer ALL	the questions					(5 x 1	= 5)
1	Define the fol	llowing						
a)	Unbiased estin	nator.						
b)	Sufficient stat	istic.						
c)	Completeness	of family of d	istributions.					
d)	Consistent est	imator.						
e)	Bayes' estima	tor.						
			SECT	TION A – K2	(CO1)			
	Answer ALL		$(5 \times 1 = 5)$					
2	True or Fals	e						
a)	Let X_1 , X_2 be a random sample of size 2 from $B(1, \theta)$, $0 < \theta < 1$. Then $X_{1+} X_{2}$ is sufficient for θ .							
b)	The binomial distribution does not belong to exponential family.							
c)	Let $X_1, X_2,, X_n$ be a random sample of size n from $P(\theta)$, $\theta > 0$. Then sample mean is M.L.E. of θ .							
d)	The Lehmann	-Scheffe theor	em provides U	JMVUE.				
e)	Jackknife is no	ot a re-samplin	ng method.					
			SECT	TION B – K3	(CO2)			
	Answer any	THREE of the	following				(3 x 10 =	30)
3	Establish the properties of class of all unbiased estimators of $g(\theta)$.							
4	Let $X_1, X_2,, X_n$ be a random sample of size n from $U[0, \theta]$, $\theta > 0$. Show that the n th order statistic is							is
	sufficient for	θ .						
5	Show that the	ow that the family of normal distributions is complete.						
6	Let the follow	-						
	X	0	1	2	3	4	5	
	f	5	11	15	12	6	1	
	=	=	=	e 50 from a b	inomial distri	bution having	g n = 5. Find the	he
	maximum like							
7	Explain Jackk	nife and Boots	strap methods.					

	SECTION C – K4 (CO3)					
	Answer any TWO of the following (2 x 12.5 = 2	25)				
8	Suppose $X_1, X_2,, X_n$ is a random sample from the distribution with the p.d.f.					
	$f(x; \theta) = \theta \exp(-\theta x), \theta > 0, x > 0, \text{ find MVBE of } 1/\theta.$					
9	(a) Show that M.L.E. is not unique and not sufficient with an example each.					
	(b) Prove the invariance property of CAN estimator. (6.5-	+6)				
10	Let $X_1, X_2,, X_n$ be a random sample from $N(\theta, 1)$. Show that sample mean and sample variance are					
	independent with the help of Basu's theorem.					
11	Let $X\sim(0, \theta)$, $\theta>0$. Assume that the prior distribution of θ is $h(\theta)=\theta exp(-\theta)$, $\theta>0$. Find Bayes'					
	estimator of θ if the loss function is (i) squared error and (ii) absolute error. (7.5+	-5)				
	SECTION D – K5 (CO4)					
	Answer any ONE of the following $(1 \times 15 = 1)$	15)				
12	State and prove the Cramer-Rao inequality after stating the regularity conditions.					
13	(a) If δ_1^* is UMVUE and δ_2^* is bounded UMVUE then show that δ_1^* . δ_2^* is also UMVUE.	(9)				
	(b) State and prove the Rao-Blackwell theorem.	(6)				
	SECTION E – K6 (CO5)					
	Answer any ONE of the following $(1 \times 20 = 2)$	20)				
14	(a) Let $X_1, X_2,, X_n$ be i.i.d. $P(\theta)$, $\theta > 0$. Show that sample mean is UMVUE of θ . (1)	0)				
	(b) Show with an example that an estimator is consistent but not consistent asymptotically normal. (1	0)				
15						
15						

\$\$\$\$\$\$\$\$\$\$\$\$